
Carr
Actuarial

[INSERT NAME OF PRESENTATION]Risky Business:

Model Testing and Development

May 21, 2024

Carr Actuarial: Kevin Carr, FSA, MAAA
Martello Re: Matt Heaphy, FSA, MAAA

Presentations are intended for educational purposes only and
do not replace independent professional

judgment. Statements of fact and opinions expressed are
those of the participants individually and, unless expressly
stated to the contrary, are not the opinion or position of the
Society of Actuaries, its cosponsors or its committees. The

Society of Actuaries does not endorse or approve, and
assumes no responsibility for, the content, accuracy or
completeness of the information presented. Attendees

should note that the sessions are audio-recorded and may be
published in various media, including print, audio and video

formats without further notice.

PRESENTATION DISCLAIMER

2

Presentations are intended for educational purposes only and
do not replace independent professional
judgment. Statements of fact and opinions expressed are
those of the speakers individually and, unless expressly
stated to the contrary, are not the opinion or position of the
Society of Actuaries, the American Academy of Actuaries, the
Actuarial Club of Hartford & Springfield, or the speakers’
respective employers.

SPEAKERS

Logo, icon

Description automatically generated

Icon

Description automatically generated

Expertise: data science, experience studies, annuity
pricing and product development, actuarial
modeling, hedging, and reinsurance.
Education: Bachelor of Science degree in Actuarial
Science from the University of Connecticut.
Open-source contributions: actxps (an actuarial
experience study toolkit for R and Python), offsetreg
(a predictive modeling R package for offset terms).

Matt Heaphy, FSA, MAAA
Head of Pricing & Risk Analytics at Martello Re

Kevin Carr, FSA, MAAA
Founder & Principal at Carr Actuarial

Expertise: actuarial modeling including (re)building,
testing, and ongoing management, universal life
pricing and product development, experience
studies, and reinsurance
Education: Master of Science in Mathematics from
Northeastern University
Software: AXIS , MG-ALFA, TAS
Languages: VBA, Python, R, SQL, C++

Logo, icon

Description automatically generated

https://www.linkedin.com/in/matt-heaphy-b60a731a/
https://github.com/mattheaphy
mailto:matt.heaphy@martellore.com
https://mattheaphy.github.io/actxps/
https://mattheaphy.github.io/actxpspy/
https://mattheaphy.github.io/offsetreg/
https://www.linkedin.com/in/kevin-carr-87400b17/
mailto:kevin.carr@carractuarial.com

AGENDA PART 1

Topic Title

1 ASOP 56 & MDLC
2 Testing & pitfalls
3 Model testing/review recommendations

ASOP 56
& MDLC

1

ASOP 56 can be interpreted to apply whenever a model is involved
ASOP 56: A BRIEF REVIEW

Purpose [Section 1.1]
“This actuarial standard of practice (ASOP or standard) provides guidance to actuaries when performing
actuarial services with respect to designing, developing, selecting, modifying, using, reviewing, or evaluating
models.”

Scope [Section 1.2]
All practice areas when performing actuarial services to the extent of the services provided

Definitions [Section 2]
Thirteen definitions covering items like assumption, data, input, model, model run, and output

Analysis of Issues and Recommended Practices [Section 3]
Main body covering model meeting intended purpose, understanding the model, reliance on others, mitigation
of model risk, and documentation

Communications & Disclosures [Section 4]
Required disclosures, reference to ASOPs 23 & 41, recommended additional disclosures

ASOP 56
Modeling

2.8 MODEL

A simplified representation of
relationships among real world
variables, entities, or events using
statistical, financial, economic,
mathematical, non-quantitative, or
scientific concepts and equations.
A model consists of three
components: an
information input component, which
delivers data and assumptions to
the model; a processing component,
which transforms input into output;
and a results component, which
translates the output into useful
business information.

ASOP 56: DEFINITION OF A MODEL

Section Key points

“Actuary should evaluate model risk and … take reasonable steps to mitigate”
ASOP 56: MITIGATING MODEL RISK

3.6.1 Model testing

3.6.2 Model output
validation

3.6.3 Review by another
professional

3.6.4 Reasonable
governance & controls

3.6.5 Mitigating misuse
and misinterpretation

Certain testing activities of model may be reasonable including input
validation, formula checking, sensitivity testing, and output
reconciliation

Activities focused on output including A/E analysis, implications of
different hold-out periods for predictive models, assumption change
implications, and alternative model output comparisons

Having another qualified professional review may be appropriate

Governance and controls do not need to be directly tied to actuary
utilizing model or output

ASOP 41 provides additional guidance

3.7 Documentation Document. Document. Document.

vsRequirements

Design

Develop

Test

Deploy

Review

Waterfall

• Big bang approach

• Full requirements
up front

• Less flexible than Agile

• Once through entire
sequence

1

2

3

4

5

6

Agile

• Incremental approach

• Less initial planning

• Less rigid than Waterfall

• Numerous cycles over
the course of the project

Two common approaches in actuarial projects are Waterfall and Agile
MODEL DEVELOPMENT LIFE CYCLE

TESTING &
PITFALLS

2

Dynamic validation
Static validation
Input validation

Calculation validation
Single cell/policy testing

Regression testing
Sensitivity testing

Implied rate analysis
Attribution analysis

Comparison to alternative models
Review by another professional

Insufficient granularity

Not comprehensive

Lack of documentation

Invalid source of truth

Inconsistent execution/application

Lack of automation

Examples of highlighted items later in presentation
COMMON TESTING ACTIVITIES & PITFALLS

And the biggest…
Not regularly testing your model

Testing Activities Pitfalls

5,400

5,600

5,800

6,000

6,200

6,400

6,600

6,800

7,000

7,200

t-4 t-3 t-2 t-1 t+1 t+2 t+3 t+4

Does this look reasonable?
Historical
Projected

PITFALLS IN ACTION: DYNAMIC VALIDATION

Total

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

t-4 t-3 t-2 t-1 t+1 t+2 t+3 t+4

What about now?

1500

2000

2500

3000

3600

3700

3800

3900

4000

200

400

600

Product A

Product B

Product C

Total (A + B + C)

Historical
Projected

PITFALLS IN ACTION: DYNAMIC VALIDATION

Pre-model

Model environment

Post-model

A common approach is to utilize inputs structured for models in downstream testing tools
What sort of

issues can
arise in this
workflow?

In general?

How can we
protect
against
them?Testing Tool

Assumption
Documents

Model Input

Actuarial Model Output
Database

PITFALLS IN ACTION: SINGLE CELL TESTING

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Implied mortality rate per 1,000

What is happening between durations 11 and 12? Is something wrong?
PITFALLS IN ACTION: IMPLIED RATE ANALYSIS (1/2)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Implied mortality rate per 1,000
Aggregate Cohort 1 Residual

A large lapse event for an older age cohort is creating the aggregate distortion – no actual problem!
PITFALLS IN ACTION: IMPLIED RATE ANALYSIS (2/2)

Large lapse event for Cohort 1
creating drop in aggregate mortality

MODEL
TESTING/REVIEW
RECOMMENDATIONS

4

Have a required testing/review framework
• Static validation
• Input validation on new inputs
• Calculation validation on new functionality
• Single cell testing
• Model regression testing
• Review of items changed in model

MODEL TESTING/REVIEW RECOMMENDATIONS

Review documentation
• Know where the model came from
• Learn the limitations

Waterfall changes
• Estimate impact ahead of time if possible
• Review incremental updates for reasonability

Open Source
Model
Considerations

In-house actuarial
models built with
open source
software are
increasingly
common.

What best
practices can we
learn from
software
developers?

Agenda

00 What do we mean by “open source”?

01 Unit testing

02 Version control

03 Dependency management

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential &
Proprietary. Not for Distribution.
| Slide no:
20

What do we mean by
“open source”?

| 5/15/2024Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution. | Slide no: 21

True Open Source

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

22

Free to anyone

Complete access to source
code

Communal

“As-is” / use at your own risk

Open Systems

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

23

Proprietary or vendor-
provided

Authorized users have
complete access to source
code

Can be built with open source
tools

Requires model governance
and controls

Company A’s
Python
Project

Built with open source

Company B’s
R Project

Company C’s
Julia Project

Vendor “open” systems

MG-ALFA FIS Prophet

Open source ≠
open systems built with

open source tools

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

24

But for the purposes of this talk, we’re going to
use “open source” as shorthand

Unit Testing

| 5/15/2024Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution. | Slide no: 25

▪ Calculation tests

▪ Sanity checks

▪ Error handling tests

▪ Regression tests

Unit tests are the first line of defense for catching bugs

and verifying that future changes haven’t broken

anything

What are Unit Tests?

Automated tests to verify that individual components

of a program are working correctly

Does my PV function return the correct value?

Are mortality rates between 0 and 1?

Is an error returned if I pass text to a
numeric input?

Does my model return the same results as
before?

Popular Unit Testing Frameworks

R Case Study

Assume we need a function that calculates life annuity present values (äx)

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

28

Function design

• Inputs for age, gender, and a
discount rate

• Annual payments at the beginning
of each projection year

• Mortality = 2012 IAM Basic

annuity_calc.R

Informal testing

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution. | Slide no:
29

Reasonable results are returned

Higher mortality for males

Higher mortality at older ages

Lower discount rates, higher present values

testthat provides functions for writing and running tests

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

30

Testing Workflow

• Create a tests/ directory

• Save scripts containing unit tests into tests/

• Run tests

• One file at a time: test_file("tests/test-

{name}.R")

• An entire directory: test_dir("tests")

• When developing an R package:

devtools::test()

Introducing the testthat package

Unit Test Structure

Start with test_that() and a simple description

One or more calls to functions
beginning with expect_*()

Annuity Factor Unit Tests 1/2

A regression test

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

31

tests/test-my_awesome_tests.R

expect_equal(): the first two
arguments must be equal within a
specified degree of tolerance

Annuity Factor Unit Tests 2/2

Verify that mortality is higher at older ages

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

32

tests/test-my_awesome_tests.R

expect_gt(): The first
argument must be greater
than the second argument

expect_lt(): The first
argument must be less than
the second argument

expect_true(): The
argument must result in
True.

More robust: test all ages
from 30 to 90

Running tests in a single file

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

33

A test doomed to fail

Can you spot the problem?

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

34

tests/test-my_less_awesome_tests.R
Hint:

Testing failures

Testing a directory

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

35

my_awesome_tests is still passing

One failure in
my_less_awesome_tests
because “M” and “F” were passed
instead of “Male” and “Female”

Dealing with failure 1/3

Write more robust functions to automatically catch bad inputs and return informative error messages

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

36

annuity_calc.R

This change will send an informative
error message if i_gender is
anything other than “Male” or
“Female”

Dealing with failure 2/3

Write a test to capture errors

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

37

tests/my_reformed_tests.R

Corrected

This verifies that an error
containing the message
“`i_gender` must be one of” is
returned

Dealing with failure 3/3

Run tests again and verify a successful outcome

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

38

▪ devtools::test(): A single command to run all tests

against the current version of the package

▪ Configure tests to run automatically:

▪ Whenever the package is quality checked using R’s

package checking program

▪ Upon creation of a pull request

Unit testing is an integral component of package

development and can be fully automated into

routine workflows.

Advanced: Unit Testing & Package
Development

Unit testing the actxps R package

For more information, see R Packages (2e) - 13 Testing basics (r-pkgs.org)

https://r-pkgs.org/testing-basics.html

Putting in the upfront work to create robust unit tests can substantially improve the

quality and stability of solutions built using open source tools.

Unit Testing Advice

Write tests as
you code

Write concise
tests

Consider likely
input errors

Be
comprehensive

Immortalize
bugs with new

tests

Test, and re-
test often

Version Control

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

41

What is Git?

Distributed Version Control System

Tracks changes to code

Manages incorporation of changes

A red and black sign

Description automatically generated

https://git-scm.com/

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

43

Benefits of Git

Discipline and Control
Identify changes immediately

Require approval and testing

Stability
Reproduce prior results, or revert to prior versions
if necessary

Single source of truth
User A and user B are using consistent, tested
versions

Encourage exploration
Safely develop new features in a walled-off
environment

Definitions

• Repository (“repo”): All the code associated with a

particular project

• Branch: A copy of the repository that was created for a

specific purpose, usually to make a change in a walled-

off development environment

• “Main” Branch: The tested / approved / locked-down

production version of the code

• Remote: The centralized official location of the

repository, hosted in a service like GitHub

• Local: A local copy of the repository on your computer

GitFlow

A code-free primer on working with Git

Remote

Local

Main

Main

Dev-A

Dev-A

Dev-B

https://github.com/

Change process

1. Create a branch

2. Make and save changes

3. Commit changes

4. Push commits

5. Pull request

6. Merge

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Change process

1. Create a branch: update the local copy of main* to

ensure it’s up-to-date with the remote.

2. Make and save changes

3. Commit changes

4. Push commits

5. Pull request

6. Merge

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Main

* Or another target to “branch off” from

Pull

Change process

1. Create a branch: update the local copy of main* to

ensure it’s up-to-date with the remote. Create a

development branch.

2. Make and save changes

3. Commit changes

4. Push commits

5. Pull request

6. Merge

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Main

* Or another target to “branch off” from

Dev

Pull

Change process

1. Create a branch

2. Make and changes: Update code as needed.

3. Commit changes

4. Push commits

5. Pull request

6. Merge

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Main

Dev

Untracked
changes

Change process

1. Create a branch

2. Make and changes

3. Commit changes: Formally log changes, telling Git

these changes are “good to go”.

4. Push commits

5. Pull request

6. Merge

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Main

Dev

Change process

1. Create a branch

2. Make and changes

3. Commit changes: Formally log changes, telling Git

these changes are “good to go”. Repeat as needed.

4. Push commits

5. Pull request

6. Merge

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Main

Dev

Change process

1. Create a branch

2. Make and changes

3. Commit changes

4. Push commits: Publish the development branch to

the remote.

5. Pull request

6. Merge

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Main

Dev

Push

Dev

Change process

1. Create a branch

2. Make and changes

3. Commit changes

4. Push commits

5. Pull request: Submit a request asking for changes in

the development branch to be merged into main.

6. Merge

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Main

Dev

Dev

Main
?

Pull Request

Change process

1. Create a branch

2. Make and changes

3. Commit changes

4. Push commits

5. Pull request

6. Merge: If approved, commits from the development

branch are merged into the main branch.

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Dev

Dev

Main

Change process

1. Create a branch

2. Make and changes

3. Commit changes

4. Push commits

5. Pull request

6. Merge: If approved, commits from the development

branch are merged into the main branch. Its job

complete, the development branch is typically deleted.

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Main

Change process

1. Create a branch

2. Make and changes

3. Commit changes

4. Push commits

5. Pull request

6. Merge

7. Wrap-up (optional): For good measure, synch up the

local version of main with the remote

GitFlow

Making changes requires more than Ctrl+S

Remote

Local

Main

Main

Pull

Learning Curve and Best Practices

It takes time to learn Git
• Command line program

• R Studio and VS Code have GUI’s – use them

It’s a double-edged sword
• Everyday mistakes can be rolled back

• However, after a pull request, Git sins are
recorded in the repository’s history

Best practices
• Exclude files that shouldn’t be tracked

• Never commit large files

• Have robust review and approval process

https://xkcd.com/1597/

https://xkcd.com/1597/

Dependency
Management
Third Party Dependency Risks

 and

Environment Management

October 2022

A small technical

issue in a single R

package triggered a

dependency

contagion that

momentarily

threatened the

availability of 25% of

all R packages!

The isoband incident
A dramatic near-miss for R users that you haven’t heard about

https://www.r-bloggers.com/2022/10/cran-and-the-isoband-incident-is-your-project-at-risk-and-how-to-fix-it/

25%

https://www.r-bloggers.com/2022/10/cran-and-the-isoband-incident-is-your-project-at-risk-and-how-to-fix-it/

Third Party Dependency Advice

Inspect your

dependencies

Have a fallback plan1 2
▪ How mature is the dependent

package, and when was the last

update?

▪ Is there a large, existing user base?

▪ Who is maintaining the package?

▪ Does the package contain sufficient

unit test coverage?

▪ Have you verified the package

works as intended for your

purpose?

▪ What happens if a dependency is

no longer available from a public

repository?

▪ Is there an alternative public

repository?

▪ Does your company have an

internally mirror repository?

▪ Are there alternative packages?

https://xkcd.com/2347/

Third party dependency risks are easy to neglect and

require a risk assessment

https://xkcd.com/2347/

A collection of packages, utilities, and

functions that your project depends

upon.

Examples

• R and Python language versions

• R and Python packages

• C++ header files

A new feature or a change in a

package leads to different results, and

your team is using inconsistent

package versions.

Example

• R’s native pipe, |>, requires v4.1

Use virtual environment management

software to create project-specific

environments with locked down version

requirements

Available software

• Python: venv, conda, virtualenv

• R: renv

What is an environment? What’s the risk? What’s the solution?1 2 3

For serious production use-cases, environments must be locked down to guarantee everyone is

using identical versions of third-party packages.

Advanced: Environment Management

“But it works for me!” – everyone who uses open source, at some point

|
5/15/2024

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.
| Slide no:

60

Wrap-Up

Recap

3 best practices we can glean from software developers

Unit Testing

Version Control

Dependency
Management

Thank you

Martello Re | Copyright © 2024 Martello Re. Confidential & Proprietary. Not for Distribution.| 5/15/2024| Slide no: 63

	Default Section
	Slide 1
	Slide 2: Presentation Disclaimer
	Slide 3: Speakers
	Slide 4

	ASOP 56 & MDLC
	Slide 5
	Slide 6: ASOP 56: A brief review
	Slide 7: Asop 56: definition of a model
	Slide 8: Asop 56: mitigating model risk
	Slide 9: Model development life cycle

	Testing & Pitfalls
	Slide 10
	Slide 11: Common testing activities & pitfalls
	Slide 12: PITFALLs IN ACTION: DYNAMIC VALIDATION
	Slide 13: PITFALLS IN ACTION: DYNAMIC VALIDATION
	Slide 14: PITFALLS IN ACTION: SINGLE CELL TESTING
	Slide 15: PITFALLS IN ACTION: IMPLIED RATE ANALYSIS (1/2)
	Slide 16: PITFALLS IN ACTION: IMPLIED RATE ANALYSIS (2/2)

	Model Testing/Review Recommendations
	Slide 17
	Slide 18: Model testing/review recommendations

	Matt's Section
	Slide 19: Open Source Model Considerations
	Slide 20: In-house actuarial models built with open source software are increasingly common. What best practices can we learn from software developers?
	Slide 21: What do we mean by “open source”?
	Slide 22: True Open Source
	Slide 23: Open Systems
	Slide 24: Open source ≠ open systems built with open source tools
	Slide 25: Unit Testing
	Slide 26: What are Unit Tests?
	Slide 27: Popular Unit Testing Frameworks
	Slide 28: R Case Study
	Slide 29: Informal testing
	Slide 30: Introducing the testthat package
	Slide 31: Annuity Factor Unit Tests 1/2
	Slide 32: Annuity Factor Unit Tests 2/2
	Slide 33: Running tests in a single file
	Slide 34: A test doomed to fail
	Slide 35: Testing failures
	Slide 36: Dealing with failure 1/3
	Slide 37: Dealing with failure 2/3
	Slide 38: Dealing with failure 3/3
	Slide 39: Advanced: Unit Testing & Package Development
	Slide 40: Unit Testing Advice
	Slide 41: Version Control
	Slide 42: What is Git?
	Slide 43: Benefits of Git
	Slide 44: GitFlow
	Slide 45: GitFlow
	Slide 46: GitFlow
	Slide 47: GitFlow
	Slide 48: GitFlow
	Slide 49: GitFlow
	Slide 50: GitFlow
	Slide 51: GitFlow
	Slide 52: GitFlow
	Slide 53: GitFlow
	Slide 54: GitFlow
	Slide 55: GitFlow
	Slide 56: Learning Curve and Best Practices
	Slide 57: Dependency Management
	Slide 58: The isoband incident
	Slide 59: Third Party Dependency Advice
	Slide 60: Advanced: Environment Management
	Slide 61: Wrap-Up
	Slide 62: Recap
	Slide 63: Thank you

